4 research outputs found

    Efficiently Manifesting Asynchronous Programming Errors in Android Apps

    Full text link
    Android, the #1 mobile app framework, enforces the single-GUI-thread model, in which a single UI thread manages GUI rendering and event dispatching. Due to this model, it is vital to avoid blocking the UI thread for responsiveness. One common practice is to offload long-running tasks into async threads. To achieve this, Android provides various async programming constructs, and leaves developers themselves to obey the rules implied by the model. However, as our study reveals, more than 25% apps violate these rules and introduce hard-to-detect, fail-stop errors, which we term as aysnc programming errors (APEs). To this end, this paper introduces APEChecker, a technique to automatically and efficiently manifest APEs. The key idea is to characterize APEs as specific fault patterns, and synergistically combine static analysis and dynamic UI exploration to detect and verify such errors. Among the 40 real-world Android apps, APEChecker unveils and processes 61 APEs, of which 51 are confirmed (83.6% hit rate). Specifically, APEChecker detects 3X more APEs than the state-of-art testing tools (Monkey, Sapienz and Stoat), and reduces testing time from half an hour to a few minutes. On a specific type of APEs, APEChecker confirms 5X more errors than the data race detection tool, EventRacer, with very few false alarms

    Collaborative verification of information flow for a high-assurance app store.

    No full text
    ABSTRACT Current app stores distribute some malware to unsuspecting users, even though the app approval process may be costly and timeconsuming. High-integrity app stores must provide stronger guarantees that their apps are not malicious. We propose a verification model for use in such app stores to guarantee that the apps are free of malicious information flows. In our model, the software vendor and the app store auditor collaborate -each does tasks that are easy for her/him, reducing overall verification cost. The software vendor provides a behavioral specification of information flow (at a finer granularity than used by current app stores) and source code annotated with information-flow type qualifiers. A flow-sensitive, context-sensitive information-flow type system checks the information flow type qualifiers in the source code and proves that only information flows in the specification can occur at run time. The app store auditor uses the vendor-provided source code to manually verify declassifications. We have implemented the information-flow type system for Android apps written in Java, and we evaluated both its effectiveness at detecting information-flow violations and its usability in practice. In an adversarial Red Team evaluation, we analyzed 72 apps (576,000 LOC) for malware. The 57 Trojans among these had been written specifically to defeat a malware analysis such as ours. Nonetheless, our information-flow type system was effective: it detected 96% of malware whose malicious behavior was related to information flow and 82% of all malware. In addition to the adversarial evaluation, we evaluated the practicality of using the collaborative model. The programmer annotation burden is low: 6 annotations per 100 LOC. Every sound analysis requires a human to review potential false alarms, and in our experiments, this took 30 minutes per 1,000 LOC for an auditor unfamiliar with the app
    corecore